Praxology in advanced geometry textbooks for distance education: A hermeneutic review of structure and knowledge representation
DOI:
https://doi.org/10.58524/jasme.v5i2.840Keywords:
Distance Education, Euclidean Geometry, Hermeneutic Phenomenology, Praxeology, Textbook AnalysisAbstract
Background: Geometry plays a fundamental role in mathematics education by developing logical reasoning and spatial understanding. Despite its importance, geometry remains a difficult subject for university students, particularly in distance learning contexts. While several studies have analyzed geometry textbooks, few have examined their knowledge structures through a praxeological perspective.
Aim: This study aims to analyze a university-level Euclidean geometry textbook by identifying how the components of praxeology, namely task (T), technique (τ), technology (θ), and theory (Θ), are organized and interconnected to support meaningful learning.
Method: The research applied a hermeneutic phenomenological design. The textbook, used in a master’s geometry course at an Indonesian university, was analyzed through repeated readings and qualitative interpretation. Data were coded and categorized according to the praxeological framework and validated through researcher discussions.
Result: The findings show that the textbook demonstrates a coherent praxeological structure with accurate theoretical explanations and effective technological representations. However, the analysis revealed weaknesses such as limited rationale for applying specific techniques, insufficient connection between theoretical concepts and exercises, and few examples of proofs.
Conclusion: The study concludes that while the textbook reflects strong praxeological principles, improvements are needed in clarifying technique rationales, linking theory and practice, and structuring technological components. The results provide pedagogical insights for developing university geometry textbooks that enhance conceptual understanding, reflective reasoning, and learning effectiveness in both traditional and distance education settings.
References
Alghadari, F., Turmudi, & Herman, T. (2018). The application of vector concepts on two skew lines. Journal of Physics: Conference Series, 948, 012030. https://doi.org/10.1088/1742-6596/948/1/012030
Ali, C. A., Asemani, E., & Tangkur, M. (2024). Pupils’ didactical Mileu in an inclusive discourse in basic triangle geometry. International Journal of Didactic Mathematics in Distance Education, 1(2), 70–82. https://doi.org/10.33830/ijdmde.v1i2.9523
Andrilli, S., & Hecker, D. (2023). Finite dimensional vector spaces. In Elementary Linear Algebra (pp. 141–204). Elsevier. https://doi.org/10.1016/B978-0-12-822978-1.00014-6
Azzahra, N., & Herman, T. (2022). Students’ learning obstacles in social arithmetic. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(1), 187. https://doi.org/10.24127/ajpm.v11i1.4621
Bahreyni, N., Cafaro, C., & Rossetti, L. (2024). An observer-based view of Euclidean geometry. Mathematics, 12(20), 3275. https://doi.org/10.3390/math12203275
Bašić, M., & Milin Šipuš, Ž. (2022). Geometrical reasoning in the teaching and learning of integrals of multivariable functions. International Journal of Research in Undergraduate Mathematics Education, 8(2), 245–268. https://doi.org/10.1007/s40753-022-00179-8
Basir, M., & Wijayanti, D. (2020). Strategies to provide scaffolding when teaching mathematical reasoning. Proceedings of the 1st International Conference on Islamic Civilization, ICIC 2020, 27th August 2020, Semarang, Indonesia. https://doi.org/10.4108/eai.27-8-2020.2303266
Basri, H., García-García, J., Rodríguez-Nieto, C. A., Rifanda, A. R., & Indahwati, R. (2025). GeoGebra-Assisted discovery learning: an effective strategy to enhance elementary students’ interest in learning plane area measurement. International Journal of Didactic Mathematics in Distance Education, 2(1), 1–15. https://doi.org/10.33830/ijdmde.v2i1.11272
BSKAP. (2022). Pembelajaran dan asesmen. BSKAP.
Burlacu, A., & Mihai, A. (2023). Applications of differential geometry of curves in roads design. Romanian Journal of Transport Infrastructure, 12(2), 1–13. https://doi.org/10.2478/rjti-2023-0010
Çakıroğlu, E., Kohanová, I., İşler-Baykal, I., Slavíčková, M., Di Paola, B., Michal, J., & Høynes, S.-M. (2023). Mathematics teachers’ uses of resources in the context of teaching reasoning-and-proving: Insights from a cross-national study. Thirteenth Congress of the European Society for Research in Mathe- Matics Education (CERME13), hal-04417327. https://hal.science/hal-04417327v1
Castañeda-Miranda, V. H., Luque-Vega, L. F., Lopez-Neri, E., Nava-Pintor, J. A., Guerrero-Osuna, H. A., & Ornelas-Vargas, G. (2021). Two-dimensional cartesian coordinate system educational toolkit: 2D-Cacset. Sensors, 21(18), 6304. https://doi.org/10.3390/s21186304
Chivai, C., Soares, A., & Catarino, P. (2023). Bibliographic review on teaching orthogonal projections with 3D technology. 1145–1154. https://doi.org/10.21125/inted.2023.0335
Coppens, L. C., Postema, C. E. S., Schüler, A., Scheiter, K., & van Gog, T. (2021). Development of attention and accuracy in learning a categorization task. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.544135
Csiba, P., & Vajo, P. (2024). Problems and challenges of using randomized automatically evaluating geometric construction problems in Moodle LMS. AIMS Mathematics, 9(3), 5234–5249. https://doi.org/10.3934/math.2024253
Cuarteros, K. G., & Roble, D. B. (2024). Teacher-student perceptions of senior high school mathematics textbooks: Basis for textbook development framework. Journal of Innovations in Teaching and Learning, 4(1), 48–50. https://doi.org/10.12691/jitl-4-1-8
Doré, M., & Broda, K. (2019). Towards intuitive reasoning in axiomatic geometry. Electronic Proceedings in Theoretical Computer Science, 290, 38–55. https://doi.org/10.4204/EPTCS.290.4
Doz, D., Felda, D., & Cotič, M. (2022). High school students’ attitudes towards geometry: An exploratory factor analysis. Cypriot Journal of Educational Sciences, 17(6), 2090–2104. https://doi.org/10.18844/cjes.v17i6.7504
Dreher, A., Wang, T.-Y., Feltes, P., Hsieh, F.-J., & Lindmeier, A. (2024). High-quality use of representations in the mathematics classroom – a matter of the cultural perspective? ZDM – Mathematics Education, 56(5), 965–980. https://doi.org/10.1007/s11858-024-01597-5
Elshenhab, A. M., Moaaz, O., Dassios, I., & Elsharkawy, A. (2022). Motion along a space curve with a quasi-frame in Euclidean 3-space: Acceleration and jerk. Symmetry, 14(8), 1610. https://doi.org/10.3390/sym14081610
Evans, T., Mejía-Ramos, J. P., & Inglis, M. (2022). Do mathematicians and undergraduates agree about explanation quality? Educational Studies in Mathematics, 111(3), 445–467. https://doi.org/10.1007/s10649-022-10164-2
Fiantika, F. R., Budayasa, I. K., & Lukito, A. (2018). Internal process: What is abstraction and distortion process? Journal of Physics: Conference Series, 983(1). https://doi.org/10.1088/1742-6596/983/1/012086
Fitriyani, I., Astuti, E. P., & Nugraheni, P. (2023). Analisis kesulitan belajar geometri materi bangun datar pada siswa SMP. Jurnal Pendidikan Sultan Agung, 3(2), 163–174. https://jurnal.unissula.ac.id/index.php/jpsa/article/view/30751
Fuster Guillen, D. E. (2019). Investigación cualitativa: Método fenomenológico hermenéutico. Propósitos y Representaciones, 7(1), 201. https://doi.org/10.20511/pyr2019.v7n1.267
Giglio, J. F. T., & Rodrigues, W. A. (2012). Gravitation and electromagnetism as geometrical objects of a Riemann-Cartan spacetime structure. Advances in Applied Clifford Algebras, 22(3), 649–664. https://doi.org/10.1007/s00006-012-0353-5
Greenberg, M. J. (2010). Old and new results in the foundations of elementary plane euclidean and non-euclidean geometries. American Mathematical Monthly, 117(3), 198–216. https://doi.org/10.4169/000298910X480063
Gröger, D. (2021). Some geometric characterizations of Pythagorean and Euclidean fields. Journal of Geometry, 112(1), 17. https://doi.org/10.1007/s00022-021-00578-3
Hadi, T. S., Waluya, S. B., Mulyono, & Suyitno, A. (2025). The quantum learning model’s view of mathematical logical intelligence from the point of view of creativity in mathematics learning. ASM Science Journal, 20(1), 1–16. https://doi.org/10.32802/asmscj.2025.1862
Heijungs, R. (2025). Revisiting the definition of vectors—from ‘magnitude and direction’ to abstract tuples. Foundations, 5(2), 12. https://doi.org/10.3390/foundations5020012
Hendriyanto, A., Suryadi, D., Dahlan, J. A., & Juandi, D. (2023). Praxeology review: Comparing Singaporean and Indonesian textbooks in introducing the concept of sets. Eurasia Journal of Mathematics, Science and Technology Education, 19(2). https://doi.org/10.29333/ejmste/12953
Isnawan, M. G. (2023). Pola pembelajaran epistemik: Sebuah pemikiran awal untuk pendidikan. Nashir Al-Kutub Indonesia.
Isnawan, M. G., Alsulami, N. M., Rusmayadi, Muh., & Yanuarto, W. N. (2023). Analysis of student learning barriers in fractional multiplication: A hermeneutics phenomenology study in higher education. Edumatica: Jurnal Pendidikan Matematika, 13(1), 11–22. https://doi.org/https://doi.org/10.22437/edumatica.v13i01.24190
Isnawan, M. G., Alsulami, N. M., & Sudirman, S. (2024). Optimizing prospective teachers’ representational abilities through didactical design-based lesson study. International Journal of Evaluation and Research in Education (IJERE), 13(6), 4004. https://doi.org/10.11591/ijere.v13i6.29826
Isnawan, M. G., Suryadi, D., & Turmudi, T. (2022). How do secondary students develop the meaning of fractions? A hermeneutic phenomenological study. Beta: Jurnal, 15(1), 1–19. https://doi.org/10.20414/betajtm.v15i1.496
Jang, D. H., Yi, P., & Shin, I. S. (2016). Examining the effectiveness of digital textbook use on students’ learning outcomes in South Korea: A Meta-analysis. Asia-Pacific Education Researcher, 25(1), 57–68. https://doi.org/10.1007/s40299-015-0232-7
Johnston, N. (2021). Vector spaces. In Advanced Linear and Matrix Algebra (pp. 1–166). Springer International Publishing. https://doi.org/10.1007/978-3-030-52815-7_1
Kafle, N. P. (2011). Hermeneutic phenomenological research method simplified. An Interdisciplinary Journal, 5, 181–200. https://www.nepjol.info/index.php/BOHDI/article/view/8053/6556
Korchmaros, A. (2025). System of equations and configurations in the Euclidean space. Aequationes Mathematicae, 99(3), 1003–1023. https://doi.org/10.1007/s00010-024-01114-9
Laili, N., & Siswono, T. Y. E. (2020). Giving questions as scaffolding to help student in constructing proof. MUST: Journal of Mathematics Education, Science and Technology, 5(2), 143. https://doi.org/10.30651/must.v5i2.5882
Li, F., & Wang, L. (2024). A study on textbook use and its effects on students’ academic performance. Disciplinary and Interdisciplinary Science Education Research, 6(1). https://doi.org/10.1186/s43031-023-00094-1
Liapi, K. A. (2002). Geometry in architectural engineering education revisited. Journal of Architectural Engineering, 8(3), 80–88. https://doi.org/10.1061/(ASCE)1076-0431(2002)8:3(80)
Listiani, T., & Saragih, M. J. (2022). Hambatan belajar mahasiswa dalam pembelajaran jarak jauh pada mata kuliah geometri analitik. Jurnal Cendekia: Jurnal Pendidikan Matematika, 06(02), 2201–2211. https://j-cup.org/index.php/cendekia/article/view/1461/696
Ma, X., Ning, X., Chen, X., & Liu, J. (2019). Geometric coplanar constraints-aided autonomous celestial navigation for spacecraft in deep space exploration. IEEE Access, 7, 112424–112434. https://doi.org/10.1109/ACCESS.2019.2934501
Marange, I. Y., & Tatira, B. (2023). Teaching Euclidean geometry with GeoGebra: Perceptions for in-service mathematics teachers. Eurasia Journal of Mathematics, Science and Technology Education, 19(12), em2367. https://doi.org/10.29333/ejmste/13861
Masina, F. K., & Mosvold, R. (2023). Impediments to learning problem-solving in Malawian lower secondary mathematics textbooks. African Journal of Teacher Education and Development, 2(1), 0986–8650. https://library.aosis.co.za/index.php/record/view/43438?utm
Mayerhofer, M., Lüftenegger, M., & Eichmair, M. (2024). The development of mathematics expectancy-value profiles during the secondary–tertiary transition into STEM fields. International Journal of STEM Education, 11(1). https://doi.org/10.1186/s40594-024-00491-6
Miao, Y., Liu, P., Fu, I. C. S., Lei, Q., Lau, S. S. Y., & Tao, Y. (2022). The study of architectural geometry and shape in the energy balance of glazed roofs. Buildings, 12(10), 1550. https://doi.org/10.3390/buildings12101550
Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.) SAGE Publications, Inc. https://id.id1lib.org/book/3593988/83e08f
Minculete, N. (2019). Some refinements of Ostrowski’s inequality and an extension to a 2-inner product space. Symmetry, 11(5), 707. https://doi.org/10.3390/sym11050707
Mitchell, I., & Carbone, A. (2011). A typology of task characteristics and their effects on student engagement. International Journal of Educational Research, 50(5–6), 257–270. https://doi.org/10.1016/j.ijer.2011.05.001
Mlambo, P. B., & Sotsaka, D. T. S. (2025). Exploring synergies in Euclidean geometry and isometric drawing: A snapshot on grade 12 mathematics and engineering graphics & design. Eurasia Journal of Mathematics, Science and Technology Education, 21(4), em2617. https://doi.org/10.29333/ejmste/16172
Ni, S., Jiang, Z., & Chiang, F. (2025). Visual attention to different types of graphical representations in elementary school mathematics textbooks: An eye-movement-based study. STEM Education, 5(3), 448–472. https://doi.org/10.3934/steme.2025022
Novita, R., Prahmana, R. C. I., Fajri, N., & Putra, M. (2018). Penyebab kesulitan belajar geometri dimensi tiga. Jurnal Riset Pendidikan Matematika, 5(1), 18–29. https://doi.org/10.21831/jrpm.v5i1.16836
Olver, P. J., & Shakiban, C. (2018). Inner products and norms (pp. 129–182). https://doi.org/10.1007/978-3-319-91041-3_3
Pocalana, G., & Robutti, O. (2024). Evolution of teachers’ and researchers’ praxeologies for designing inquiry mathematics tasks: the role of teachers’ beliefs. Journal of Mathematics Teacher Education. https://doi.org/10.1007/s10857-024-09620-y
Raave, D. K., Saks, K., Pedaste, M., & Roldan Roa, E. (2024). How and why teachers use technology: Distinct integration practices in K-12 education. Education Sciences, 14(12), 1301. https://doi.org/10.3390/educsci14121301
Roubach, M. (2023). Phenomenology and mathematics. Cambridge University Press. https://doi.org/10.1017/9781108993913
Ruamba, M. Y., Sukestiyarno, Y. L., Rochmad, R., & Asih, T. S. N. (2025). The impact of visual and multimodal representations in mathematics on cognitive load and problem-solving skills. International Journal of Advanced and Applied Sciences, 12(4), 164–172. https://doi.org/10.21833/ijaas.2025.04.018
Runisah, R. R., Ismunandar, D., Sudirman, S., & Vianto, Y. G. (2021). Auditory Intellectually Repetition: Apakah Berdampak Pada Kemampuan Pemahaman Geometri Siswa Berkemampuan Rendah. JNPM (Jurnal Nasional Pendidikan Matematika), 5(1), 125-135. https://doi.org/10.33603/jnpm.v5i1.4224
Rustam, Bistari, & Novianti, M. (2024). Mathematics teachers’ perceptions towards geometry teaching methods in relation to technological transformations. Mosharafa: Jurnal Pendidikan Matematika, 13(2), 349–360. https://doi.org/10.31980/mosharafa.v13i2.1661
Scheja, B., & Rott, B. (2024). Mathematical tasks: A review of classification systems. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-024-00506-z
Schoenherr, J., & Schukajlow, S. (2024). Characterizing external visualization in mathematics education research: a scoping review. ZDM – Mathematics Education, 56(1), 73–85. https://doi.org/10.1007/s11858-023-01494-3
Sudirman, S., Belbase, S., Rodríguez-Nieto, C., Muslim, A., & Faizah, S. (2025). Personalization of Interactive Teaching Materials Supported by Augmented Reality: Potentials vs Obstacles in 3D Geometry Learning. Journal Of Curriculum Studies Research, 7(1), 152-178. https://doi.org/10.46303/jcsr.2025.8
Sudirman, S., Kusumah, Y. S., Martadiputra, B. A. P., & Runisah, R. (2023). Epistemological Obstacle in 3D Geometry Thinking: Representation, Spatial Structuring, and Measurement. Pegem Journal of Education and Instruction, 13(4), 292–301. https://doi.org/10.47750/pegegog.13.04.34
Sudirman, S., Andrés Rodríguez-Nieto, C., Bongani Dhlamini, Z., Singh Chauhan, A., Baltaeva, U., Abubakar, A., O. Dejarlo, J., & Andriani, M. (2023). Ways of thinking 3D geometry: exploratory case study in junior high school students. Polyhedron International Journal in Mathematics Education, 1(1), 15–34. https://doi.org/10.59965/pijme.v1i1.5
Sudirman, Kusumah, Y. S., & Martadiputra, B. A. P. (2022). Investigating the Potential of Integrating Augmented Reality into the 6E Instructional 3D Geometry Model in Fostering Students’ 3D Geometric Thinking Processes. International Journal of Interactive Mobile Technologies, 16(06), pp. 61–80. https://doi.org/10.3991/ijim.v16i06.27819
Sudirman, S., Mellawaty, M., Yaniawati, P., & Indrawan, R. (2021). Augmented reality application: What are the constraints and perceptions of the students during the covid 19 pendemic’s 3D geometry learning process?. In Journal of Physics: Conference Series (Vol. 1783, No. 1, p. 012007). IOP Publishing.
Sun, C. (2024). Investigate the Theoretical Significance and Applications for Differential Geometry. Highlights in Science, Engineering and Technology IFMPT, 88, 967–971. https://drpress.org/ojs/index.php/HSET/article/download/19267/18824/22666
Sunday, A. S. (2014). Mathematics textbook analysis: A study on recommended mathematics textbooks in school use in southwestern states of Nigeria. European Scientific Journal, 1, 140–7881. https://paperzz.com/download/7912218
Takva, Ç., Gökşen Takva, F., & Takva, Y. (2023). Geometric design in architecture: Examination of tessellation configurations in structural systems. Periodica Polytechnica Architecture, 54(3), 167–176. https://doi.org/10.3311/ppar.22824
Teh, S. Y., Tanko, D. N., Goh, C. F., & Sim, Y. S. (2025). Mathematical model for estimating skin permeation parameters. ASM Science Journal, 20(1), 1–7. https://doi.org/10.32802/asmscj.2025.1631
Toybah, S., Hawa, V. A., & Suganda, M. (2020). Need analysis of teaching books based on a scientific approach to geometry and measurement courses. Advances in Social Science, Education and Humanities Research, 513, 275–280. https://www.atlantis-press.com/proceedings/sule-ic-20/125950386?utm
Trigueros, M., Cabrera, A. C., & Aguilar, M. S. (2024). Mental constructions for the learning of the concept of vector space. ZDM – Mathematics Education, 56(7), 1417–1431. https://doi.org/10.1007/s11858-024-01640-5
Uzun, Z. B., & Özturk, G. (2023). Students’ spatial abilities, attitudes towards geometry and Van Hiele geometric thinking levels. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 17(Özel Sayı), 666–694. https://doi.org/10.17522/balikesirnef.1284875
Vivanco-Galván, O., Castillo-Malla, D., Suconota, E., Quizphe, R., & Jiménez-Gaona, Y. (2024). Enhancing mathematical function understanding in university students: a comparative study of design thinking vs. traditional teaching methods. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1364642
Wang, T. L., & Yang, D. C. (2016). A comparative study of geometry in elementary school mathematics textbooks from five countries. European Journal of STEM Education, 1(3), 58. https://doi.org/10.20897/lectito.201658
Weigand, H. G., Hollebrands, K., & Maschietto, M. (2025). Geometry education at secondary level – a systematic literature review. ZDM - Mathematics Education. https://doi.org/10.1007/s11858-025-01703-1
Weinberg, A., & Wiesner, E. (2011). Understanding mathematics textbooks through reader-oriented theory. Educational Studies in Mathematics, 76(1), 49–63. https://doi.org/10.1007/s10649-010-9264-3
Westley, L. (2024). How might a mastery style of teaching in mathematics lead to deeper understanding and sustained levels of attainment? Education 3-13, 1–14. https://doi.org/10.1080/03004279.2024.2405023
Wijaya, T. T., Cao, Y., Weinhandl, R., & Tamur, M. (2022). A meta-analysis of the effects of E-books on students’ mathematics achievement. Heliyon, 8(6). https://doi.org/10.1016/j.heliyon.2022.e09432
Wijaya, T. T., Zhou, Y., Houghton, T., Weinhandl, R., Lavicza, Z., & Yusop, F. D. (2022). Factors affecting the use of digital mathematics textbooks in Indonesia. Mathematics, 10(11), 1808. https://doi.org/10.3390/math10111808
Wijayanti, D. A., Sampoerno, P. D., & Meidianingsih, Q. (2021). The development of Euclid geometry’s teaching materials based on KKNI to improve students cognition analysis and deductive reasoning abilities. Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang, 5(1), 74–82. https://doi.org/10.31331/medivesveteran.v5i1.1439
Yorulmaz, A., & Çilingir Altıner, E. (2021). Do geometry self-efficacy and spatial anxiety predict the attitudes towards geometry? Mimbar Sekolah Dasar, 8(2), 205–216. https://doi.org/10.53400/mimbar-sd.v8i2.35914
Yumiati, Y; Rodriugez-Nieto, C.A; Bonyah, E., Sudirman, S & Haji, S. (2024). Evaluating Bengkulu culture’s role in mathematics learning outside classrooms for understanding measurement. International Journal of Evaluation and Research in Education, 13(6), 4307-4320. http://doi.org/10.11591/ijere.v13i6.30163
Yunianta, T. N. H., Suryadi, D., Dasari, D., & Herman, T. (2023). Textbook praxeological-didactical analysis: Lessons learned from the Indonesian mathematics textbook. Journal on Mathematics Education, 14(3), 503–524. https://doi.org/10.22342/jme.v14i3.pp503-524
Zardashti, R., & Emami, S. (2021). Spatial geometry design of a low earth orbit constellation for iranian regional navigation satellite system. Journal of Aerospace Technology and Management, 13, e3221. https://doi.org/10.1590/jatm.v13.1215
Zu, U. S. M., & Yow, K. S. (2024). An analysis on research collaboration between mathematicians in Universiti Putra Malaysia. ASM Science Journal, 19, 1–11. https://doi.org/10.32802/asmscj.2023.1485
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mery Noviyanti, Sudirman Sudirman, Thesa Kandaga, Sendi Ramdhani, Muhamad Galang Isnawan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Journal of Advanced Sciences and Mathematics Education agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Journal of Advanced Sciences and Mathematics Education is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
