Smart Sports Recruitment: Leveraging Software for Talent Precision
DOI:
https://doi.org/10.58524/jcss.v3i2.529Keywords:
Talent identification, Software, Athlete recruitment, Anthropometrics, Biomotor.Abstract
This research highlights the critical role of technology in sports, particularly in identifying and developing talent more effectively. Technology enables better athlete performance analysis; however, talent identification still relies on traditional methods. Coaches and sports teachers often select athletes based solely on competition results without leveraging technology-based analysis. As a result, important biomotor components are frequently overlooked, and the manual processing of talent data is time-consuming and less effective. To develop sports talent identification software based on biomotor and anthropometric databases to accelerate the search for talented athletes and sports recommendations efficiently and accurately. Biomotor and anthropometric test items are adopted from the talent scouting test scoring system of the Ministry of Youth and Sports of the Republic of Indonesia. The development method consists of the following stages: (1) performing needs analysis through surveys and interviews, (2) designing a talent identification model with a flow diagram, (3) developing a talent identification model using the Entity-Relationship Model, (4) testing the validity of the model by material and media experts using the Content Validity Index, and (5) conducting field trials with battery tests and anthropometric measurements. Producing talent identification software called Talent Identification Development (TIDev). Expert validation showed the I-CVI validity index of 0.93 (material) and 0.90 (media), indicating the high effectiveness of TIDev in identifying potential athletes and providing sports recommendations. A trial of 40 junior high school students showed that 34 students felt that the recommendations were based on their interests and talents, covering 12 recommended sports. TIDev can accelerate and simplify athlete recruitment, providing accurate and reliable sports analysis and recommendations.
References
Abbott, A., & Collins, D. (2004). Eliminating the dichotomy between theory and practice in talent identification and development: Considering the role of psychology. Journal of Sports Sciences, 22(5), 395–408. https://doi.org/10.1080/02640410410001675324
Abrori, R. B., . W., & Nurfadhila, R. (2023). Software development of sports talent identification using sport search analysis method. International Journal of Multidisciplinary Research and Analysis, 06(09), 4086–4093. https://doi.org/10.47191/ijmra/v6-i9-20
Akgun, S., & Greenhow, C. (2021). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI and Ethics, 0123456789. https://doi.org/10.1007/s43681-021-00096-7
Alexiou, P., Nikolopoulos, A., Lola, A., Tsalis, G., Mavridis, G., Manou, V., & Dalamitros, A. (2024). A descriptive study of coaches’ perceptions regarding talent identification and development in swimming. International Journal of Human Movement and Sports Sciences, 12(2), 326–336. https://doi.org/10.13189/saj.2024.120207
Appelbaum, L. G., & Erickson, G. (2018). Sports vision training: A review of the state-of-the-art in digital training techniques. International Review of Sport and Exercise Psychology, 11(1), 160–189. https://doi.org/10.1080/1750984X.2016.1266376
Attalla, S. M., Chen, H. W. J., Ruhi, S., Kumar, K., Aktar, M., Ibrahim, J., Honorato, N., & Johar, J. (2024). The effectiveness of technology enhanced assessment in Malaysian higher education for medical students. Online Learning In Educational Research (OLER), 4(1), 41–47. https://doi.org/10.58524/oler.v4i1.372
Avcı, P., Bayrakdar, A., Meriçelli, M., İncetaş, M. O., Panoutsakopoulos, V., Kollias, I. A., Ay Yıldız, Y., Akbaş, D., Satılmış, N., Kılınçarslan, G., Akyüz, B., Kırıkoğlu, N., & Yumuk, E. D. (2023). The use of developing technology in sports. In The Use of Developing Technology in Sports (Issue October). https://doi.org/10.58830/ozgur.pub315
Bakhtiar, S., Syahputra, R., Putri, L. P., Mardiansyah, A., Atradinal, Hendrayana, A. A., Afrian, H., Mardela, R., & Pion, J. (2023). Sports talent profile of 7-12 years old: Preliminary study of talent identification in Indonesia. Journal of Physical Education and Sport, 23(12), 3167–3177. https://doi.org/10.7752/jpes.2023.12361
Bangsbo, J., Mohr, M., & Krustrup, P. (2006). Physical and metabolic demands of training and match-play in the elite football player. Journal of Sports Sciences, 24(7), 665–674. https://doi.org/10.1080/02640410500482529
Barraclough, A. S., Till, K., Kerr, A., & Emmonds, S. (2022). Methodological approaches to talent identification in team sports: A narrative review. Sports, 10(6), 1–16. https://doi.org/10.3390/sports10060081
Blobel, T., Rumo, M., & Lames, M. (2021). Sports information systems: A systematic review. International Journal of Computer Science in Sport, 20(1). https://doi.org/10.2478/ijcss-2021-0001
Gall, M. D., Gall, J. P., & Borg, W. R. (2014). Applying educational research: How to read, do, and use research to solve problems of practice. Pearson
Brown, J. D. (2002). The Cronbach alpha reliability estimate. JALT Testing & Evaluation SIG Newsletter, 6(1), 17–18.
Carla L. Dellaserra, Yong Gao, L. R. (2014). Use of integrated technology in team sports: A review of opportunities, challenges, and future directions for athletes. Journal of Strength and Conditioning Research, 28(2), 556–573. https://doi.org/10.1519/JSC.0b013e3182a952fb
Cattle, A., Mosher, A., Mazhar, A., & Baker, J. (2023). Early specialization and talent development in figure skating: Elite coaches’ perspectives. Current Issues in Sport Science (CISS), 8(1), 013. https://doi.org/10.36950/2023.1ciss013
Chen, Z., & Dai, X. (2024). Utilizing AI and IoT technologies for identifying risk factors in sports. Heliyon, 10(11), e32477. https://doi.org/10.1016/j.heliyon.2024.e32477
Chmait, N., & Westerbeek, H. (2021). Artificial intelligence and machine learning in sport research: An introduction for non-data scientists. Frontiers in Sports and Active Living, 3(December), 1–8. https://doi.org/10.3389/fspor.2021.682287
Cossich, V. R. A., Carlgren, D., Holash, R. J., & Katz, L. (2023). Technological breakthroughs in sport: Current practice and future potential of artificial intelligence, virtual reality, augmented reality, and modern data visualization in performance analysis. Applied Sciences (Switzerland), 13(23). https://doi.org/10.3390/app132312965
Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performance. Journal of Sports Sciences, 37(5), 568–600. https://doi.org/10.1080/02640414.2018.1521769
Exel, J., & Dabnichki, P. (2024). Precision sports science: What is next for data analytics for athlete performance and well-being optimization? Applied Sciences (Switzerland), 14(8). https://doi.org/10.3390/app14083361
García-Hermoso, A., Ezzatvar, Y., Ramírez-Vélez, R., Olloquequi, J., & Izquierdo, M. (2021). Is device-measured vigorous physical activity associated with health-related outcomes in children and adolescents? a systematic review and meta-analysis. Journal of Sport and Health Science, 10(3), 296–307. https://doi.org/10.1016/j.jshs.2020.12.001
Glebova, E., Madsen, D. Ø., Mihaľová, P., Géczi, G., Mittelman, A., & Jorgič, B. (2024). Artificial intelligence development and dissemination impact on the sports industry labor market. Frontiers in Sports and Active Living, 6(March), 1–11. https://doi.org/10.3389/fspor.2024.1363892
Gray, H. J., & Plucker, J. A. (2010). “She’s a natural”: Identifying and developing athletic talent. Journal for the Education of the Gifted, 33(3), 361–380. https://doi.org/10.1177/016235321003300304
Güllich, A., Barth, M., Hambrick, D. Z., & Macnamara, B. N. (2023). Participation patterns in talent development in youth sports. Frontiers in Sports and Active Living, 5, 1175718. https://doi.org/10.3389/fspor.2023.1175718
Hadi, R. (2019). The identification of sports talent in male students of junior high school in Semarang City. 362(Acpes), 112–115. https://doi.org/10.2991/acpes-19.2019.25
Hamid, A. P., Rosyid Ridlo Al-Hakim, Yanuar Zulardiansyah Arief, Brainvendra Widi Dionova, & Mahmmoud Hussein A. Alrahman. (2023). Recent updates on intelligent system for talent management: Does that become a helpful system? SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 3(1), 38–44. https://doi.org/10.54259/satesi.v3i1.1590
Irurtia, A., Torres-Mestre, V. M., Cebrián-Ponce, Á., Carrasco-Marginet, M., Altarriba-Bartés, A., Vives-Usón, M., Cos, F., & Castizo-Olier, J. (2022). Physical fitness and performance in talented & untalented young chinese soccer players. Healthcare (Switzerland), 10(1). https://doi.org/10.3390/healthcare10010098
Islahuzzaman, N. (2010). Identifikasi bakat usia dini siswa SD - SMP Surakarta. Paedagogia, 13(1), 61-69 universitas sebelas maret,surakarta.
Jamil, M., Phatak, A., Mehta, S., Beato, M., Memmert, D., & Connor, M. (2021). Using multiple machine learning algorithms to classify elite and sub-elite goalkeepers in professional men’s football. Scientific Reports, 11(1), 1–7. https://doi.org/10.1038/s41598-021-01187-5
Karras, A., Giannaros, A., Karras, C., Theodorakopoulos, L., Mammassis, C. S., Krimpas, G. A., & Sioutas, S. (2024). TinyML algorithms for big data management in large-scale IoT systems. Future Internet, 16(2), 1–29. https://doi.org/10.3390/fi16020042
Khan, N. J., Ahamad, G., Naseem, M., & Sohail, S. S. (2023). Computational efficiency in sports talent identification – a systematic review. International Journal of Applied Decision Sciences, 16(3), 358–384. https://doi.org/10.1504/IJADS.2023.130600
Koopmann, T., Faber, I., Baker, J., & Schorer, J. (2020). Assessing technical skills in talented youth athletes: A systematic review. Sports Medicine, 50(9), 1593–1611. https://doi.org/10.1007/s40279-020-01299-4
Leite, N., Calvo, A. L., Cumming, S., Gonçalves, B., & Calleja-Gonzalez, J. (2021). Editorial: Talent identification and development in sports performance. In Frontiers in Sports and Active Living (Vol. 3). https://doi.org/10.3389/fspor.2021.729167
Lidor, R., Côté, J., & Hackfort, D. (2009). ISSP position stand: To test or not to test? the use of physical skill tests in talent detection and in early phases of sport development. International Journal of Sport and Exercise Psychology, 7(2), 131–146. https://doi.org/10.1080/1612197X.2009.9671896
Mahesh, T. R., Singh, S., Srivastav, V., Kalra, H., Surulivel Rajan, T., & Yadav, G. B. (2023). Adaptive modeling for real-time data analysis with machine learning. 2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023, August, 1–6. https://doi.org/10.1109/SMARTGENCON60755.2023.10442430
Marhayati, R., Diani, R., Saregar, A., Fujiani, D., Putra, F. G., & Fitri, M. R. (2022). Optimization of online learning during the covid-19 pandemic in rural areas. Smart Society : Community Service and Empowerment Journal, 2(1), 33–38. https://doi.org/10.58524/smartsociety.v2i1.83
McCosker, C., Otte, F., Rothwell, M., & Davids, K. (2022). Principles for technology use in athlete support across the skill level continuum. International Journal of Sports Science and Coaching, 17(2), 437–444. https://doi.org/10.1177/17479541211033471
Monsees, L. (2024). Same, same but different?–A comparative discourse-theoretical content analysis of the constructions of football talent in German and Swedish newspapers. Sport in Society, 27(7), 1139–1161. https://doi.org/10.1080/17430437.2023.2288150
Nilsen, A.-K., Øvrevik Kjerland, G., & Fusche Moe, V. (2024). Designing talent development in football–a document analysis of the Norwegian academy classification model. Soccer & Society, 1–17. https://doi.org/10.1080/14660970.2024.2313970
Olusoga, P., Maynard, I., Hays, K., & Butt, J. (2012). Coaching under pressure: A study of olympic coaches. Journal of Sports Sciences, 30(3), 229–239. https://doi.org/10.1080/02640414.2011.639384
Orosz, R., & Mezo, F. (2015). Psychological factors in the development of football-talent from the perspective of an integrative sport-talent model. Journal for the Education of Gifted Young Scientists, 3(1), 58–76. https://doi.org/10.17478/JEGYS.2015112018
Pamungkas, A. R., Wijayanti, N. P. N., Vai, A., & Ittaqwa, I. (2022). Development of smartphone-based athlete physical fitness applications during work from home. Journal of Coaching and Sports Science, 1(1), 18–27. https://doi.org/10.58524/jcss.v1i1.107
Parra-Martinez, F. A., & Wai, J. (2023). Talent identification research: A bibliometric study from multidisciplinary and global perspectives. Frontiers in Psychology, 14(May), 1–22. https://doi.org/10.3389/fpsyg.2023.1141159
Persson, M., Espedalen, L. E., Stefansen, K., & Strandbu, Å. (2020). Opting out of youth sports: How can we understand the social processes involved? Sport, Education and Society, 25(7), 842–854. https://doi.org/10.1080/13573322.2019.1663811
Persson, R. S. (2012). Cultural variation and dominance in a globalised knowledge-economy: Towards a culture-sensitive research paradigm in the science of giftedness. Gifted and Talented International, 27(1), 15–48. https://doi.org/10.1080/15332276.2012.11673603
Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what’s being reported? critique and recommendations. Research in Nursing & Health, 29(5), 489–497. https://doi.org/10.1002/nur.20147
Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Focus on research methods is the CVI an acceptable indicator of content validity? appraisal and recomendations. Research in Nursing & Health, 30(4), 459–467. https://doi.org/10.1002/nur.20199
Priyadarshini, P., & Veeramanju, K. T. (2023). A systematic review on machine learning algorithms for customer satisfaction classification in various fields. International Journal of Management, Technology, and Social Sciences, 8(3), 326–339. https://doi.org/10.47992/IJMTS.2581.6012.0305
Radtke, S., & Doll-Tepper, G. (2014). A cross-cultural comparison of talent identification and development in Paralympic sports (Issue July).
Retnawati, H. (2016). Proving content validity of self-regulated learning scale (the comparison of aiken index and expanded gregory index). 2(2), 155–164. https://doi.org/10.21831/reid.v2i2.11029
Reyaz, N., Ahamad, G., Khan, N. J., & Naseem, M. (2022). Machine learning in sports talent identification: A systematic review. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies, ICEFEET 2022, 15–16. https://doi.org/10.1109/ICEFEET51821.2022.9848247
Reynoso-sanchez, L. F., Mochis, L., & Attribution-noncommercial, C. (2023). Tech-driven talent identification in sports: Advancements and implications. Health Nexus, 1(3), 77–82. https://doi.org/10.61838/kman.hn.1.3.11
Saputra, H., Barlian, E., Padli, P., & Iswana, B. (2022). Physical education in high school: The contribution of noble values in sports. Journal of Coaching and Sports Science, 1(2), 54–61. https://doi.org/10.58524/jcss.v1i2.161
Seçkin, A. Ç., Ateş, B., & Seçkin, M. (2023). Review on wearable technology in sports: Concepts, challenges and opportunities. Applied Sciences (Switzerland), 13(18). https://doi.org/10.3390/app131810399
Sefati, S. S., & Halunga, S. (2023). Ultra-reliability and low-latency communications on the internet of things based on 5G network: Literature review, classification, and future research view. Transactions on Emerging Telecommunications Technologies, 34(6). https://doi.org/10.1002/ett.4770
Siener, M., Faber, I., & Hohmann, A. (2021). Prognostic validity of statistical prediction methods used for talent identification in youth tennis players based on motor abilities. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11157051
Suherman, S., Setiawan, R. H., Herdian, H., & Anggoro, B. S. (2022). 21st century STEM education: An increase in mathematical critical thinking skills and gender through technological integration. Journal of Advanced Sciences and Mathematics Education, 1(2), 33–40. https://doi.org/10.58524/jasme.v1i2.29
Susanto, E., Bayok, M., Satriawan, R., Festiawan, R., Kurniawan, D. D., & Putra, F. (2023). Talent identification predicting in athletics: A case study in Indonesia. Annals of Applied Sport Science, 11(1), 1–11. https://doi.org/10.52547/aassjournal.1102
Susanto, N., García-Jiménez, J. V., Nowak, A. M., Setyawan, H., Pavlovic, R., Rusdiawan, A., & Syaukani, A. A. (2024). Development assessment model for talent identification of young Indonesian basketball players: Anthropometrics, biomotor, technical, and tactical skills. https://doi.org/10.13189/saj.2024.120403
Teorey, T. J., Yang, D., & Fry, J. P. (1986). A logical design methodology for relational databases using the extended entity-relationship model. ACM Computing Surveys (CSUR), 18(2), 197–222. https://doi.org/10.1145/7474.7475
Till, K., & Baker, J. (2020). Challenges and [possible] solutions to optimizing talent identification and development in sport. Frontiers in Psychology, 11(April), 1–14. https://doi.org/10.3389/fpsyg.2020.00664
Vaeyens, R., Güllich, A., Warr, C. R., & Philippaerts, R. (2009). Talent identification and promotion programmes of olympic athletes. Journal of Sports Sciences, 27(13), 1367–1380. https://doi.org/10.1080/02640410903110974
Vaeyens, R., Lenoir, M., Williams, A. M., & Philippaerts, R. M. (2008). Talent identification and development programmes in sport current models and future directions. Health Affairs, 38(9), 703–714. https://doi.org/10.1377/hlthaff.7.3.80
Wang, J., & Sun, J. M. (2018). Talent development in china: Current practices and challenges ahead. Advances in Developing Human Resources, 20(4), 389–409. https://doi.org/10.1177/1523422318802591
Wibowo, M. S. R., Sukamti, E. R., Prasetyo, Y., Paryadi, Buhari, M. R., Hudah, M., Yudhistira, D., Noralisa, & Virama, L. O. A. (2022). Content validity and reliability test of balance training program for archery. International Journal of Human Movement and Sports Sciences, 10(3), 378–383. https://doi.org/10.13189/saj.2022.100303
Wijayanto, A., & Lani, A. (2019). Pembuatan software pemanduan minat bakat (pemikat) olahraga pada anak SLTP berbasis artificial intelegence. Jurnal Sains Keolahragaan Dan Kesehatan, 4(2), 47–58. https://doi.org/10.5614/jskk.2019.4.2.2
Williams, A. M., Ford, P. R., & Drust, B. (2020). Talent identification and development in soccer since the millennium. Journal of Sports Sciences, 38(11–12), 1199–1210. https://doi.org/10.1080/02640414.2020.1766647
Xiang, C., Dong, W., Kamalden, T. F. T., Ismail, N., & Luo, H. (2024). Structural analysis of environmental factors of sports talent development. Current Psychology, 43(7), 6516–6532. https://doi.org/10.1007/s12144-023-04803-x
Yulianto, W. D., Sumaryanti, & Yudhistira, D. (2021). Content validity of circuit training program and its effects on the aerobic endurance of wheelchair tennis athletes. International Journal of Kinesiology and Sports Science, 9(3), 60–65. https://doi.org/10.7575/aiac.ijkss.v.9n.3p60
Zhao, J., Xiang, C., Kamalden, T. F. T., Dong, W., Luo, H., & Ismail, N. (2024). Differences and relationships between talent detection, identification, development and selection in sport: A systematic review. Heliyon, 10(6), e27543. https://doi.org/10.1016/j.heliyon.2024.e27543
Zulfikar, M., Rahman, A., Hasyim, A. H., Haeril, H., & Faozi, F. (2022). Self-evaluation of physical education teacher. Journal of Coaching and Sports Science, 1(2), 48–53. https://doi.org/10.58524/jcss.v1i2.131
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Ramli Buhari, Jance Jacob Sapulete, Muhammad Imran Hasanuddin, Susilawati Susilawati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

