Math for olympiad: a didactic proposal for high school from the perspective of the international mathematical olympiad

Authors

DOI:

https://doi.org/10.58524/jasme.v2i2.135

Keywords:

Didactic Proposal, GeoGebra, Digital Technology, Structuring

Abstract

The concept of the International Mathematics Olympiad (IMO) in learning mathematics in the classroom is something that can inspire students by structuring didactic proposals. This study aims to present a didactic proposal from the perspective of the International Mathematics Olympiad , using digital technology, particularly the GeoGebra software to be included in the mathematics Olympiad discipline. For theoretical studies, the analysis of the mathematical elements of the structured images in the GeoGebra software and the identification of their properties is included, through the structuring of the Olympic teaching situation, which allows the subject to seek solutions to the posed mathematical problems. olympics and validating the teaching of geometry. This study describes the arrangements made to build Olympic math objects that will be applied by math teachers. The research methodology is based on bibliographic reviews from authors such as Alves, Santiago, Almouloud and Brousseau. It is proven that the GeoGebra software helps in the elaboration of mathematical examples and problem solving situations.

Author Biographies

  • Paulo Vitor da Silva Santiago, Federal University of Ceará Fortalesa

    Mestre em Ensino de Ciências e Matemática pela Universidade Federal do Ceará (UFC), Professor de Matemática do Ensino Médio da Rede Estadual do Ceará (SEDUC-CE), Licenciatura em Matemática pelo Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE).

  • Francisco Régis Vieira Alves, Federal Institute of Science and Technology of the State of Ceará, Fortaleza, BRAZIL
    Doutor em Educação pela Universidade Federal do Ceará, Bolsista de produtividade do CNPQ – PQ2. Professor permanente do Programa de Pós-Graduação em Ensino de Ciências e Matemática do IFCE, Coordenador acadêmico do Doutorado em rede RENOEN, polo IFCE. Líder do Grupo de Pesquisa CNPQ Ensino de Ciências e Matemática.

References

Almouloud, S. A. (2010). Fundamentos da didática da matemática. Editora UFPR.

Andrews, G. E. (1986). q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra. American Mathematical Soc. 66 https://doi.org/10.1090/cbms/066

Artigue, M. (1988). Ingénierie didactique. Recherches En Didactique Des Mathématiques, 9(3), 281-308.

Artigue, M., Haspekian, M., & Corblin-Lenfant, A. (2014). Introduction to the theory of didactical situations (TDS). Networking of Theories as a Research Practice in Mathematics Education, 47-65. https://doi.org/10.1007/978-3-319-05389-9_4

Alves, F. R. V. (2019). Visualizing the Olympic Didactic Situation (ODS): Teaching Mathematics with Support of the GeoGebra Software. Acta Didactica Napocensia, 12(2), 97-116. https://doi.org/10.24193/adn.12.2.8

Bankov, K. (2022). The Role and Significance of the World Federation of National Mathematics Competitions in the International Mathematics Education Community. ZDM-Mathematics Education, 54(5), 961-970. https://doi.org/10.1007/s11858-022-01329-7

Choi, K. M. (2009). Characteristics of Korean International Mathematical Olympiad (IMO) winners' and various developmental influences. Columbia University.

Choi, K. M., McAninch, M., Jensen, J., & Susadya, L. (2019). Environmental and Interpersonal Factors on Development of the Mathematically Gifted: Cases of International Mathematical Olympiad Winners from Korea. Research in Mathematical Education, 22(3), 175-201.

Fonseca, L., & Arezes, S. (2017). A didactic proposal to develop critical thinking in mathematics: The case of Tomás. Journal of the European Teacher Education Network, 12, 37-48.

Garland, V. E., & Tadeja, C. (2013). Reducational leadership and technology: Preparing school administrators for a digital age. Routledge. https://doi.org/10.4324/9780203134702

He, Y., Xiong, B., Lin, T., & Zhang, Y. (2022). Mathematics competitions in China: Practice and influence. ZDM-Mathematics Education, 54(5), 1087-110 .https://doi.org/10.1007/s11858-021-01325-3

Iqbal, M. H., Siddiqie, S. A., & Mazid, M. A. (2021). Rethinking theories of lesson plan for effective teaching and learning. Social Sciences & Humanities Open, 4(1), 100172. https://doi.org/10.1016/j.ssaho.2021.100172

Jung, J. Y., & Lee, J. (2021). After the international mathematical Olympiad: The educational/career decisions and the development of mathematical talent of former Australian Olympians. Gifted Child Quarterly, 65(3), 235-261. https://doi.org/10.1177/0016986221991160

Lucena, R., Gitirana, V., & Trouche, L. (2022). Teacher education for integrating resources in mathematics teaching: contributions from instrumental meta-orchestration. The Mathematics Enthusiast, 19(1), 187-221. https://doi.org/10.54870/1551-3440.1549

Moroianu, S. (2021). Romania helps Uganda on its way to the International Mathematical Olympiad. European Mathematical Society Magazine, 120, 55-58. https://doi.org/10.4171/mag/25

Novita, R., & Herman, T. (2021). Using technology in young children mathematical learning: A didactic perspective. In Journal of Physics: Conference Series, 1957(1), p. 012013. IOP Publishing. https://doi.org/10.1088/1742-6596/1957/1/012013

Ono, K. (2008). Unearthing the visions of a master: harmonic Maass forms and number theory. Current Developments in Mathematics, 2008(1), 347-454. https://doi.org/10.4310/CDM.2008.v2008.n1.a5

Rasmussen, K. (2016). Lesson study in prospective mathematics teacher education: didactic and paradidactic technology in the post-lesson reflection. Journal of Mathematics Teacher Education, 19, 301-324. https://doi.org/10.1007/s10857-015-9299-6

Petersen, S., & Wulff, P. (2017). The German Physics Olympiad-identifying and inspiring talents. European Journal of Physics, 38(3), 34005. https://doi.org/10.1088/1361-6404/aa538f

Santiago, P. V. S., & Alves, F. R. V. (2021). Situações didáticas na Olimpíada Internacional de Matemática. Revista de Ensino de Ciências e Matemática, 12(6), 1-24. https://doi.org/10.26843/rencima.v12n6a29

Solares-Rojas, A., Arellano-Aguilar, O., García González, M. M., López-Vargas, M. D. R., Coles, A., & Méndez Serrano, A. (2022). Mathematics education and social-environmental crises: An interdisciplinary proposal for didactic innovation with rural communities in Mexico. Research in Mathematics Education, 24(2), 202-223. https://doi.org/10.1080/14794802.2022.2062781

Suleiman, A. R. (2015). Introdução ao estudo das Situações Didáticas: Conteúdos e métodos de ensino. Educação: Teoria e Prática, 25(48), 200-206. https://doi.org/10.18675/1981-8106.vol25.n48.p200-206

Vieira, F. R., & Pereira, B. M. (2021). Sobre a noção de Situação Didática Olímpica aplicada ao contexto das Olimpíadas Internacionais de Matemática. Revista de Educação Matemática (REMat), 18, 1-20. https://doi.org/10.37001/remat25269062v18id533

West, C., Baker, A., Ehrich, J. F., Woodcock, S., Bokosmaty, S., Howard, S. J., & Eady, M. J. (2020). Teacher Disposition Scale (TDS): Construction and psychometric validation. Journal of Further and Higher Education, 44(2), 185-200. https://doi.org/10.1080/0309877X.2018.1527022

Downloads

Published

2022-12-30